759 research outputs found

    Performance Comparison of the RPL and LOADng Routing Protocols in a Home Automation Scenario

    Full text link
    RPL, the routing protocol proposed by IETF for IPv6/6LoWPAN Low Power and Lossy Networks has significant complexity. Another protocol called LOADng, a lightweight variant of AODV, emerges as an alternative solution. In this paper, we compare the performance of the two protocols in a Home Automation scenario with heterogenous traffic patterns including a mix of multipoint-to-point and point-to-multipoint routes in realistic dense non-uniform network topologies. We use Contiki OS and Cooja simulator to evaluate the behavior of the ContikiRPL implementation and a basic non-optimized implementation of LOADng. Unlike previous studies, our results show that RPL provides shorter delays, less control overhead, and requires less memory than LOADng. Nevertheless, enhancing LOADng with more efficient flooding and a better route storage algorithm may improve its performance

    Broadcast Strategies with Probabilistic Delivery Guarantee in Multi-Channel Multi-Interface Wireless Mesh Networks

    Full text link
    Multi-channel multi-interface Wireless Mesh Networks permit to spread the load across orthogonal channels to improve network capacity. Although broadcast is vital for many layer-3 protocols, proposals for taking advantage of multiple channels mostly focus on unicast transmissions. In this paper, we propose broadcast algorithms that fit any channel and interface assignment strategy. They guarantee that a broadcast packet is delivered with a minimum probability to all neighbors. Our simulations show that the proposed algorithms efficiently limit the overhead

    Représentation compacte des adresses pour le routage par caractéristiques

    No full text
    International audienceNous nous intéressons à la représentation compacte des adresses afin de pouvoir router des paquets vers des destinations identifiées par leurs caractéristiques. Ce type de routage nécessite le stockage des caractéristiques de manière compacte dans l'adresse destination des paquets et dans les tables de routage. Nous étudions plusieurs solutions dans le cadre des réseaux de capteurs, où les ressources sont très limitées et les adresses suivent le format IPv6

    Design and operation of a modern Polish plant for plastic waste recycling through the degradative depolymerization process : a case study

    Get PDF
    The paper describes an installation for the degradative depolymerization of polyolefin materials obtained from wastes, hereinafter also referred to as depolymerization for simplicity. The plant, on an industrial scale, is one of the few operating in Poland. However, it is one of the most modern plants in this industry. Design solutions, construction of particular technological lines, compliance with national and EU regulations and the high level of process safety were described in this paper as well as compared to other plants of this type in Poland. Different solutions were presented in drawings and photos of the plant and in fragmentary technological diagrams. The types of waste and the methods of their processing by the plant were also characterized in accordance with the applicable regulations. The waste throughput is from 2000 to 4000 kg/h, while the efficiency of the depolymerization installation itself is 1500 kg/h. The industrial-scale depolymerization process is carried out in one or two stages: by homogenization (extraction) at a temperature up to 200 °C and depolymerization at temperatures up to 400 °C. The obtained products (energy goods) are sold for further processing. The processes, devices and methods are characterized by novel, innovative solutions, covered by a number of patents, which are also described below. The advantage of the presented technology is the substantial simplification of the process and thereby a considerable reduction in investment costs. Among others, the processes of distillation and rectification (low- and negative-pressure) were abandoned

    Link Quality Metrics in Large Scale Indoor Wireless Sensor Networks

    No full text
    International audiencePouvoir estimer la qualité d'un lien sur la base d'un minimum de paquets est essentiel pour un réseau de capteur sans fil multisaut en environnement "indoor" compte tenu du coût énergétique de cette estimation et de ses conséquences sur la stabilité des routes construites sur ces liens. Notre étude s'appuie ainsi sur des expérimentations intensives menées sur une plateforme Senslab (\cite{www_senslab}) qui nous ont permis de trouver des lois de distribution suivies par les métriques physiques (RSSI, LQI) pour 3 catégories de liens (bons, mauvais, intermédiaires) regroupés par plage de PRR (Packet Reception Ratio). Sur la base de ces distributions, nous observons comment elles peuvent nous aider à discriminer les différents liens et ainsi les utiliser dans de futures expérimentations pour améliorer l'efficacité de protocoles de routage de réseaux de capteurs dans le choix des liens

    Multichannel Virtual Access Points for Seamless Handoffs in IEEE 802.11 Wireless Networks

    No full text
    Session: Handoff and Mobility Management 2International audienceWithin IEEE 802.11 Wireless Local Area Networks (WLANs), client stations can move freely, but because of the short range of their Access Points (APs), they usually need to reassociate with different APs to continue to communicate. When changing APs, a client station starts a process known as a handoff that can take up to 2 seconds, which is too long for real-time applications such as Voice over IP (VoIP). Various solutions have been proposed to change or improve the client behaviour when doing a handoff. Previously, we proposed the idea of Virtual Access Points (VAP) implemented on APs in which a client station changes APs without disrupting its current communication. Based on this new concept, we have developed a solution called Multichannel Virtual Access Points (mVAP) to take advantage of APs operating on multiple channels. We have implemented mVAP using PACMAP, a tool for packet manipulation, and evaluated its performance. Our results show that mVAP is a new efficient technique for seamless handoffs without performance degradation

    DTLS Performance in Duty-Cycled Networks

    Get PDF
    The Datagram Transport Layer Security (DTLS) protocol is the IETF standard for securing the Internet of Things. The Constrained Application Protocol, ZigBee IP, and Lightweight Machine-to-Machine (LWM2M) mandate its use for securing application traffic. There has been much debate in both the standardization and research communities on the applicability of DTLS to constrained environments. The main concerns are the communication overhead and latency of the DTLS handshake, and the memory footprint of a DTLS implementation. This paper provides a thorough performance evaluation of DTLS in different duty-cycled networks through real-world experimentation, emulation and analysis. In particular, we measure the duration of the DTLS handshake when using three duty cycling link-layer protocols: preamble-sampling, the IEEE 802.15.4 beacon-enabled mode and the IEEE 802.15.4e Time Slotted Channel Hopping mode. The reported results demonstrate surprisingly poor performance of DTLS in radio duty-cycled networks. Because a DTLS client and a server exchange more than 10 signaling packets, the DTLS handshake takes between a handful of seconds and several tens of seconds, with similar results for different duty cycling protocols. Moreover, because of their limited memory, typical constrained nodes can only maintain 3-5 simultaneous DTLS sessions, which highlights the need for using DTLS parsimoniously.Comment: International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC - 2015), IEEE, IEEE, 2015, http://pimrc2015.eee.hku.hk/index.htm

    The use of PMU data for detecting and monitoring selected electromagnetic disturbances

    Get PDF
    Power quality (PQ) monitoring is important for both the utilities and also the users of electric power. The most widespread measurement instrument used for PQ monitoring is the PQM (Power Quality Monitor) or PQA (Power Quality Analyzer). In this paper we propose the usage of PMU data for PQ parameters monitoring. We present a new methodology of PQ parameters monitoring and classification based on PMU data. The proposed methodology is tested with real measurements performed in distribution system using dedicated PMU system

    Characteristics of plastic waste processing in the modern recycling plant operating in Poland

    Get PDF
    Although Poland is one of the leading recipients of the waste stream in the European Union (EU), it is at the same time below the average in terms of efficiency of their use/utilization. The adopted technological solutions cause waste processing rates to be relatively low in Poland. As a result, the report of the Early Warning and Response System (EWRS) of the EU indicated Poland as one of the 14 countries of the EU which are at risk in terms of possibility of achieving 50% recycling of waste. This article discusses the implemented technological solutions, and shows the profitability of the investment and the values of the process heat demand both for extractor and reactor. The experimental part analyzed the composition of the input and output of the process and compared it to the required fuel specifications. Attention was drawn to the need to improve the recycling process in order to increase the quality of manufactured fuel components. As potential ways of solving the problem of low fuel quality, cleaning the sorted reaction mass from solid particles and extending the technological line with a distillation column have been proposed. The recommended direction of improvement of the technology is also the optimization of the process of the reactor’s purification and removal of contaminants

    Sustainable Traffic Aware Duty-Cycle Adaptation in Harvested Multi-Hop Wireless Sensor Networks

    No full text
    International audienceSustainable power management techniques in energy harvesting wireless sensors currently adapt the consumption of sensors to their harvesting rate within the limits of their battery residual energy, but regardless of the traffic profile. To provide a fairer distribution of the energy according to application needs, we propose a new sustainable traffic aware duty-cycle adaptation scheme (STADA) that takes into account the traffic load in addition to previous factors. We evaluate our protocol in the specific context of multi-hop IEEE 802.15.4 beacon-enabled wireless sensor networks powered by solar energy. Simulations show that our solution outperforms traffic-unaware adaptation schemes while minimizing the variance of the quality of service provided to applications
    corecore